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Abstract- Learning to code in a new language takes a lot of 

time and effort for new as well as seasoned developers. 

There is a certain language that machines understand and 

we humans have to learn that language in order for us to 

communicate with the machine and make it do the things 

that we desire. To reduce this human-machine barrier of 

communication researchers have come up with a machine 

learning solution to translate natural language into code 

that allows developers to spend more time on logic and 

architecture rather than the actual instructions given to 

the machine. This paper surveys the approaches developed 

by various research scholars to translate natural language 

into machine understandable code. We analyze these 

approaches and state their boons and banes so that there is 

scope for improvement in this domain. This paper aims to 

give an idea about the various approaches in this domain 

to budding researchers wanting to contribute in this field. 
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I. INTRODUCTION 

There are approximately 700 different programming 

languages present in the world. Learning a programing 

language takes a lot of time and effort. In this current era 

developers are required to keep up with the pace of the ever-
growing industry which has become increasingly difficult. 

Shorter deadlines and faster results have become a common 

practice in the industry. The problem does not only impact the 

developers, in the bigger picture it also effect companies by 

delays in the project and less efficient development. 

With the help of Machine Learning and Natural Language 

Processing, Researchers and developers have come up with a 

solution in which instead of giving instructions to the machine 

in high level computer language the user would give 

instructions in normal spoken English which would then be 

translated into machine understandable code. Availability of 

large scale dataset generated by many repositories, innovation 
and improvement of machine learning algorithms, and rapid 

development in computing capacity have all contributed to the 

development of such projects.  

Machine translation (MT) has become a commonly used tool 

in all aspects of life. Linguists, sociologists, computer 

scientists and even the common man take benefit of this 

application, by processing natural language to translate it into 

some other natural language [1]. There are different 
approaches to machine translation the most common one 

being statistical machine translation and neural machine 

translation used widely in the current era. 

Statistical machine translation uses probability to translate 

from one language to another. In this approach the model 

assumes that every source S has a possible translation T and 

assigns a probability P(T|S) for every (S,T) sentence pair. [2]. 

A word sequence that is in testing is likely to be different from 

all the word sequences during training, this problem cannot be 

addressed by a statistical approach one major reason being the 

curse of dimensionality. 

Neural machine translation uses a deep neural network 
approach to translate sequences from one language to another. 

Neural machine translation or the sequence to sequence 

(seq2seq) model uses many different approaches including 

multiple recurrent neural networks [3] attention mechanism 

[4] and the current state of the art transformer architecture. 

 

II. RELATED WORK 

During the survey we found many different approaches taken 

for this application. The approaches that used neural machine 

translation provided the best results. Hence we decided to 

stick with this approach and conduct our survey on the basis of 

these findings. 

The following sub sections are organised as follows. Section 

A and Section B provides an insight about neural machine 

translation using LSTMs. Section C and Section D provides 

details about using Transformers to solve translation of natural 

language to code 

 



                    International Journal of Engineering Applied Sciences and Technology, 2021    

                                            Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195 

                               Published Online December 2021 in IJEAST (http://www.ijeast.com)  

 

192 

A. A Syntactic Neural Model for General-Purpose Code 

Generation 

During the survey we found that there are many approaches 

where researchers used LSTMs with an attention mechanism 

to translate natural language to code. This approach 

outperformed previous semantic parsing approaches 

In this paper, given a natural language intent x which is to be 

converted to a code snippet c, problem is taken head on by 

first generating an underlying AST.  The generation of AST    

is done by a grammar model that splits this process into a 

sequence of tree-constructing actions. This procedure actually 

starts with an initial derivation AST with a single root node. 

The generation process then follows a depth-first left-to right 

order choosing the APPLYRULE action following a close-set 

of grammar rules to form the general structure of the tree. The 

GENTOKEN action is called on the leaf nodes. 

 

 

Figure 1:(a) the Abstract Syntax Tree (AST) . (b) the action sequence (up to t14) used to generate the AST in (a) 

 

Before we see what these actions are let us understand a bit 

about what an AST is. An AST or an abstract Syntax tree is a 

representation of source code or in other words a set of 

production rules containing a head node and multiple child 
nodes. [5] 

The APPLYRULE chooses a rule r from a set of rules it uses 

the rule to expand a specific node by appending all its child 

nodes as shown in figure 1 at time step t4 taken from [5]. The 

APPLYRULE is basically used to grow the derivation AST. 

The GENTOKEN action is called when the program reaches a 

frontier node corresponding to a variable type. This action is 

used to fill the node with values irrespective of the number of 

token the variable has, that is if the variable is storing the 

name of a function it takes one token on the other hand a 

variable storing a string has more than one token. The 
GENTOKEN also terminates the node and the program moves 

on to the new node. [5] 

The probability of generating an AST y is given by the 

formula 

    
 

The above formula is parameterized using a neural encoder – 

decoder based LSTM. The encoder is a standard Bi-directional 

LSTM that encodes the inputs into vectorial representation. 

The decoder is also a standard LSTM that makes use of hidden 

states at each timestamp determined by the LSTM transition 

function. The decoder also makes use of the attention vector to 

give us the desired output. This method produced BLUE score 
of 84.5 on the Django dataset. 

 

The advantages of this model are, the problem with LSTM 

without attention was the fixed length internal representation 

making the LSTM unable to take long sequences of inputs. 

This was solved by keeping the intermediate outputs from the 

encoder LSTM from each step of the input sequence and 

training the model to learn to pay selective attention to these 

inputs and connect them to items in the output sequence. 

Disadvantages of this model are the increased computational 

burden on the machine and slower training as there are no 
parallel computing capabilities. 

 

B. TRANX: A Transition-based Neural Abstract Syntax 

Parser for Semantic Parsing and Code Generation 

In continuation of the previous paper Neubig et al [5] made an 

addition to the previous model that provides better results as 
compared to the existing neural model. The authors designed 

TRANX or a Transition based Abstract Syntax Parser which 

mainly has two great advantages over the previous model that 

are, its highly accurate as it uses information of the syntax of 
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the target meaning representation, to model the information 

flow in the target language and It is generalizable meaning it 

can be adapted to almost any language just by generating a 

new AST description.[6] 

As seen before this model also uses a grammar model called a 

transition system which contains three different actions 

APPLYCONSTR, GENTOKEN, and REDUCE . 

 

 APPLYCONSTR: This action actually builds the AST 

by appending Child nodes of similar type following 

certain rules like sequential cardinality. 

 GENTOKEN: Once we reach a node with a variable 

type (eg: str) which is used to fill the node with values. 

Each variable/constant can contain values with one or 

multiple tokens ( eg: storing a function name has one 

token, storing a string may have multiple tokens) To 

stop the generation of token a special 

GENTOKEN[</f>] is called. 

 REDUCE: action marks the completion of generation 
of child values. 

 

This model also uses the same probability formula to 

generate the AST which is parameterised by a neural encoder 

– decoder based LSTM as seen in the previous paper. The 

results of the TRANX model over three different kinds of 

datasets. The first one being GEO and ATIS produced an 

accuracy of 87.7 and 86.2 respectively. For the Django dataset 

it produced an accuracy of 73.7 and lastly the WikiSQL 

dataset produced 78.6 accuracy.   

 

C. Natural Language to Python Source Code using 

Transformers 

The transformer model was proposed by Google to carry out 

seq2seq tasks well. There are many benefits of the transformer 

model when compared to other seq2seq models like LSTM 

.The transformer model allows for more parallelization in 
GPUs. It can produce state of the art translations after being 

trained for as little as twelve hours on eight P100 GPUs [4]. 

Transformers are faster and more robust in comparison to 

LSTMs [7].  

The transformer model used by Meet Shah et al in their paper 

[7] produced a BLEU score of 64.2. They have  

 

Figure 2: The Transformer Model 
 

beautifully explained the transformer model by splitting it into 

four main parts. 

The first part being the dataset, here they have used ase15-

django-dataset [8] which consists of 18805 records in English 

and its corresponding python snippets. The second part is the 

pre-processing of the dataset, here the dataset is split into train 

and test containing 1500 and 3805 rows respectively. The 

dataset is then converted into tensorflow dataset format as they 

are using the tensorflow library to train the model. 
Tokenizer comes in next in which they use the 

bert_vocab_from_dataset library from tensorflow which 

generates vocabulary for both English and python. It is 

common knowledge that a machine cannot understand words 

or sentences it can only understand number so this step is vital 

to be carried out. The vocabulary size was set to 4000 and two 

bert tokenizers were trained on English and python, Also once 

the translation is completed the tokenize0072 is once again 

used to transform the output back into understandable code in 

python. 

Coming towards what exactly is a transformer model. The 
transformer model consists of an encoder layer, a decoder 

layer and a final linear layer. The entire transformer model 

consists of stacked self-attention and feed-forward fully 

connected layers for both encoder and decoder as shown in 

figure 2. [7] 

In transformer model the model doesn’t have any idea about 

the position of the word in a sentence because it processes all 

words simultaneously. Hence, an extra piece of Information 

telling the details of the position of the word is a must for this 

model which is carried out by positional encoding. [7] 
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The encoder first performs the input embedding then does 

positional encoding and then it sends the data to many 

encoding layers. As shown in figure 2 the mutlihead attention 

which makes the encoding layer splits many linear layers then 

performs the dot product attention and then mergers to form a 

final linear layer. 

As for the decoder, it performs an output embedding then 

positional encoding, and finally data goes through multiple 
decoding layers.  

Advantages of the model are that it is Non sequential meaning 

sentences are processed as a whole rather than word by word, 

therefore larger sequence is taken at a time. It has self-

attention which helps the model focus on connections but 

within the same sentence and lastly positional embedding in 

which the idea is to use fixed or learned weights which encode 

information related to a specific position of a token in a 

sentence (gives position of a word). 

Disadvantages of the model include attention which can only 

deal with fixed-length text strings. The text has to be split into 
a certain number of segments before being fed into the system 

as input. Chunking of text causes context fragmentation. 

 

D. Text2PyCode: Machine Translationof Natural 

Language Intent to Python Source Code 

In this approach S. Bonthu et al took the approach taken by 
Meet Shah et al in their paper [7] a step further by introducing 

code embedding in their model. They also use a different 

tokenizer which is the Spacy tokenizer. 

In this paper the dataset was extracted from public repositories 

like github and stackoverflow. Since the dataset was crowd 

sourced it is very noisy which was later pre-processed and 

cleaned. Neural machine translation system show lower 

translation quality on long sequences [9], so all source codes 

having length higher than 1000 characters were omitted. After 

the pre-processing they ended up having 4299 rows of data. 

The dataset was then split into train and test, training set 

containing 85 % of the dataset. 
The model implementation was carried out in three stages so 

that researchers could compare the results. 

First being the baseline model which used the implementation 

of the Sockeye toolkit [10] containing 3 sub layers and 8 heads 

for multi-head attention mechanism. Next being the initial 

model where the Spacy tokenizer was used, here the encoder 

and decoder layer of the model were also fed with the word 

embedding created by following the Word2Vec algorithm 

[11]. 

 

 

Figure 3:Architecture of the final model. 

 
In the final model the word embeddings of the source code 

was generated using the GenSim library on the CoNala python 

corpus. These pre-trained vectors are also added while 

building vocabulary for the model. The final model is shown 

in figure 3 taken from [11]. This model has a BLEU score of 

32.40 and a ROUGE score of 85.1 which Is at par with results 

of natural language processing. 

 

III. CONCLUSION 

This paper surveys different methods in translating natural 

language intent into code. We can conclude that this project 

will allow us to save time and efforts of a developer by 

making the while process of development easier. Not only 

does it save time but also in turn it saves money for the 

company developing a project by making the development 

faster and easier. It has tremendous potential in making an 

impact in this industry and making things easier for the people 

working in this industry. This project has a lot of scope for 

improvement and which is being worked on by many research 
scholars as we speak. 
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