
 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195

 Published Online December 2021 in IJEAST (http://www.ijeast.com)

191

TRANSLATION OF NATURAL LANGUAGE TO

CODE: A SURVEY

Taha Yunus Moochhala,

Student MCA Department
 Jain University, Bengaluru, Karnataka, India

Dr. Kamalraj R

Assistant Professor MCA Department
Jain University, Bengaluru, Karnataka, India

Abstract- Learning to code in a new language takes a lot of

time and effort for new as well as seasoned developers.

There is a certain language that machines understand and

we humans have to learn that language in order for us to

communicate with the machine and make it do the things

that we desire. To reduce this human-machine barrier of

communication researchers have come up with a machine

learning solution to translate natural language into code

that allows developers to spend more time on logic and

architecture rather than the actual instructions given to

the machine. This paper surveys the approaches developed

by various research scholars to translate natural language

into machine understandable code. We analyze these

approaches and state their boons and banes so that there is

scope for improvement in this domain. This paper aims to

give an idea about the various approaches in this domain

to budding researchers wanting to contribute in this field.

Keywords- neural machine translation, python, LSTM,

attention, encoder, decoder, tokenizers, transformers

I. INTRODUCTION

There are approximately 700 different programming

languages present in the world. Learning a programing

language takes a lot of time and effort. In this current era

developers are required to keep up with the pace of the ever-
growing industry which has become increasingly difficult.

Shorter deadlines and faster results have become a common

practice in the industry. The problem does not only impact the

developers, in the bigger picture it also effect companies by

delays in the project and less efficient development.

With the help of Machine Learning and Natural Language

Processing, Researchers and developers have come up with a

solution in which instead of giving instructions to the machine

in high level computer language the user would give

instructions in normal spoken English which would then be

translated into machine understandable code. Availability of

large scale dataset generated by many repositories, innovation
and improvement of machine learning algorithms, and rapid

development in computing capacity have all contributed to the

development of such projects.

Machine translation (MT) has become a commonly used tool

in all aspects of life. Linguists, sociologists, computer

scientists and even the common man take benefit of this

application, by processing natural language to translate it into

some other natural language [1]. There are different
approaches to machine translation the most common one

being statistical machine translation and neural machine

translation used widely in the current era.

Statistical machine translation uses probability to translate

from one language to another. In this approach the model

assumes that every source S has a possible translation T and

assigns a probability P(T|S) for every (S,T) sentence pair. [2].

A word sequence that is in testing is likely to be different from

all the word sequences during training, this problem cannot be

addressed by a statistical approach one major reason being the

curse of dimensionality.

Neural machine translation uses a deep neural network
approach to translate sequences from one language to another.

Neural machine translation or the sequence to sequence

(seq2seq) model uses many different approaches including

multiple recurrent neural networks [3] attention mechanism

[4] and the current state of the art transformer architecture.

II. RELATED WORK

During the survey we found many different approaches taken

for this application. The approaches that used neural machine

translation provided the best results. Hence we decided to

stick with this approach and conduct our survey on the basis of

these findings.

The following sub sections are organised as follows. Section

A and Section B provides an insight about neural machine

translation using LSTMs. Section C and Section D provides

details about using Transformers to solve translation of natural

language to code

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195

 Published Online December 2021 in IJEAST (http://www.ijeast.com)

192

A. A Syntactic Neural Model for General-Purpose Code

Generation

During the survey we found that there are many approaches

where researchers used LSTMs with an attention mechanism

to translate natural language to code. This approach

outperformed previous semantic parsing approaches

In this paper, given a natural language intent x which is to be

converted to a code snippet c, problem is taken head on by

first generating an underlying AST. The generation of AST

is done by a grammar model that splits this process into a

sequence of tree-constructing actions. This procedure actually

starts with an initial derivation AST with a single root node.

The generation process then follows a depth-first left-to right

order choosing the APPLYRULE action following a close-set

of grammar rules to form the general structure of the tree. The

GENTOKEN action is called on the leaf nodes.

Figure 1:(a) the Abstract Syntax Tree (AST) . (b) the action sequence (up to t14) used to generate the AST in (a)

Before we see what these actions are let us understand a bit

about what an AST is. An AST or an abstract Syntax tree is a

representation of source code or in other words a set of

production rules containing a head node and multiple child
nodes. [5]

The APPLYRULE chooses a rule r from a set of rules it uses

the rule to expand a specific node by appending all its child

nodes as shown in figure 1 at time step t4 taken from [5]. The

APPLYRULE is basically used to grow the derivation AST.

The GENTOKEN action is called when the program reaches a

frontier node corresponding to a variable type. This action is

used to fill the node with values irrespective of the number of

token the variable has, that is if the variable is storing the

name of a function it takes one token on the other hand a

variable storing a string has more than one token. The
GENTOKEN also terminates the node and the program moves

on to the new node. [5]

The probability of generating an AST y is given by the

formula

The above formula is parameterized using a neural encoder –

decoder based LSTM. The encoder is a standard Bi-directional

LSTM that encodes the inputs into vectorial representation.

The decoder is also a standard LSTM that makes use of hidden

states at each timestamp determined by the LSTM transition

function. The decoder also makes use of the attention vector to

give us the desired output. This method produced BLUE score
of 84.5 on the Django dataset.

The advantages of this model are, the problem with LSTM

without attention was the fixed length internal representation

making the LSTM unable to take long sequences of inputs.

This was solved by keeping the intermediate outputs from the

encoder LSTM from each step of the input sequence and

training the model to learn to pay selective attention to these

inputs and connect them to items in the output sequence.

Disadvantages of this model are the increased computational

burden on the machine and slower training as there are no
parallel computing capabilities.

B. TRANX: A Transition-based Neural Abstract Syntax

Parser for Semantic Parsing and Code Generation

In continuation of the previous paper Neubig et al [5] made an

addition to the previous model that provides better results as
compared to the existing neural model. The authors designed

TRANX or a Transition based Abstract Syntax Parser which

mainly has two great advantages over the previous model that

are, its highly accurate as it uses information of the syntax of

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195

 Published Online December 2021 in IJEAST (http://www.ijeast.com)

193

the target meaning representation, to model the information

flow in the target language and It is generalizable meaning it

can be adapted to almost any language just by generating a

new AST description.[6]

As seen before this model also uses a grammar model called a

transition system which contains three different actions

APPLYCONSTR, GENTOKEN, and REDUCE .

 APPLYCONSTR: This action actually builds the AST

by appending Child nodes of similar type following

certain rules like sequential cardinality.

 GENTOKEN: Once we reach a node with a variable

type (eg: str) which is used to fill the node with values.

Each variable/constant can contain values with one or

multiple tokens (eg: storing a function name has one

token, storing a string may have multiple tokens) To

stop the generation of token a special

GENTOKEN[</f>] is called.

 REDUCE: action marks the completion of generation
of child values.

This model also uses the same probability formula to

generate the AST which is parameterised by a neural encoder

– decoder based LSTM as seen in the previous paper. The

results of the TRANX model over three different kinds of

datasets. The first one being GEO and ATIS produced an

accuracy of 87.7 and 86.2 respectively. For the Django dataset

it produced an accuracy of 73.7 and lastly the WikiSQL

dataset produced 78.6 accuracy.

C. Natural Language to Python Source Code using

Transformers

The transformer model was proposed by Google to carry out

seq2seq tasks well. There are many benefits of the transformer

model when compared to other seq2seq models like LSTM

.The transformer model allows for more parallelization in
GPUs. It can produce state of the art translations after being

trained for as little as twelve hours on eight P100 GPUs [4].

Transformers are faster and more robust in comparison to

LSTMs [7].

The transformer model used by Meet Shah et al in their paper

[7] produced a BLEU score of 64.2. They have

Figure 2: The Transformer Model

beautifully explained the transformer model by splitting it into

four main parts.

The first part being the dataset, here they have used ase15-

django-dataset [8] which consists of 18805 records in English

and its corresponding python snippets. The second part is the

pre-processing of the dataset, here the dataset is split into train

and test containing 1500 and 3805 rows respectively. The

dataset is then converted into tensorflow dataset format as they

are using the tensorflow library to train the model.
Tokenizer comes in next in which they use the

bert_vocab_from_dataset library from tensorflow which

generates vocabulary for both English and python. It is

common knowledge that a machine cannot understand words

or sentences it can only understand number so this step is vital

to be carried out. The vocabulary size was set to 4000 and two

bert tokenizers were trained on English and python, Also once

the translation is completed the tokenize0072 is once again

used to transform the output back into understandable code in

python.

Coming towards what exactly is a transformer model. The
transformer model consists of an encoder layer, a decoder

layer and a final linear layer. The entire transformer model

consists of stacked self-attention and feed-forward fully

connected layers for both encoder and decoder as shown in

figure 2. [7]

In transformer model the model doesn’t have any idea about

the position of the word in a sentence because it processes all

words simultaneously. Hence, an extra piece of Information

telling the details of the position of the word is a must for this

model which is carried out by positional encoding. [7]

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195

 Published Online December 2021 in IJEAST (http://www.ijeast.com)

194

The encoder first performs the input embedding then does

positional encoding and then it sends the data to many

encoding layers. As shown in figure 2 the mutlihead attention

which makes the encoding layer splits many linear layers then

performs the dot product attention and then mergers to form a

final linear layer.

As for the decoder, it performs an output embedding then

positional encoding, and finally data goes through multiple
decoding layers.

Advantages of the model are that it is Non sequential meaning

sentences are processed as a whole rather than word by word,

therefore larger sequence is taken at a time. It has self-

attention which helps the model focus on connections but

within the same sentence and lastly positional embedding in

which the idea is to use fixed or learned weights which encode

information related to a specific position of a token in a

sentence (gives position of a word).

Disadvantages of the model include attention which can only

deal with fixed-length text strings. The text has to be split into
a certain number of segments before being fed into the system

as input. Chunking of text causes context fragmentation.

D. Text2PyCode: Machine Translationof Natural

Language Intent to Python Source Code

In this approach S. Bonthu et al took the approach taken by
Meet Shah et al in their paper [7] a step further by introducing

code embedding in their model. They also use a different

tokenizer which is the Spacy tokenizer.

In this paper the dataset was extracted from public repositories

like github and stackoverflow. Since the dataset was crowd

sourced it is very noisy which was later pre-processed and

cleaned. Neural machine translation system show lower

translation quality on long sequences [9], so all source codes

having length higher than 1000 characters were omitted. After

the pre-processing they ended up having 4299 rows of data.

The dataset was then split into train and test, training set

containing 85 % of the dataset.
The model implementation was carried out in three stages so

that researchers could compare the results.

First being the baseline model which used the implementation

of the Sockeye toolkit [10] containing 3 sub layers and 8 heads

for multi-head attention mechanism. Next being the initial

model where the Spacy tokenizer was used, here the encoder

and decoder layer of the model were also fed with the word

embedding created by following the Word2Vec algorithm

[11].

Figure 3:Architecture of the final model.

In the final model the word embeddings of the source code

was generated using the GenSim library on the CoNala python

corpus. These pre-trained vectors are also added while

building vocabulary for the model. The final model is shown

in figure 3 taken from [11]. This model has a BLEU score of

32.40 and a ROUGE score of 85.1 which Is at par with results

of natural language processing.

III. CONCLUSION

This paper surveys different methods in translating natural

language intent into code. We can conclude that this project

will allow us to save time and efforts of a developer by

making the while process of development easier. Not only

does it save time but also in turn it saves money for the

company developing a project by making the development

faster and easier. It has tremendous potential in making an

impact in this industry and making things easier for the people

working in this industry. This project has a lot of scope for

improvement and which is being worked on by many research
scholars as we speak.

IV. REFERENCES

[1]. A. Garg and M. Agarwal, “Machine Translation: A

Literature Review,” arXiv [cs.CL], 2018.

[2]. P. Brown et al., “A statistical approach to machine

translation,” in Readings in Machine Translation, The
MIT Press, 2003.

[3]. K. Cho et al., “Learning phrase representations using

RNN encoder-decoder for statistical machine

translation,” arXiv [cs.CL], 2014.

[4]. A. Vaswani et al., “Attention is all you need,” arXiv

[cs.CL], 2017.

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 8, ISSN No. 2455-2143, Pages 191-195

 Published Online December 2021 in IJEAST (http://www.ijeast.com)

195

[5]. P. Yin and G. Neubig, “A syntactic neural model for

general-purpose code generation,” arXiv [cs.CL], 2017.

[6]. P. Yin and G. Neubig, “TRANX: A transition-based

neural abstract syntax parser for semantic parsing and

code generation,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, 2018.

[7]. M. Shah, R. Shenoy, and R. Shankarmani, “Natural
language to python source code using transformers,” in

2021 International Conference on Intelligent

Technologies (CONIT), 2021, pp. 1–4.

[8]. Y. Oda et al., “Learning to generate pseudo-code from

source code using statistical machine translation,” in

2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2015, pp.

574–584.

[9]. P. Koehn and R. Knowles, “Six Challenges for Neural

Machine Translation,” arXiv [cs.CL], 2017.

[10]. F. Hieber et al., “Sockeye: A Toolkit for Neural
Machine Translation,” arXiv [cs.CL], 2017.

[11]. S. Bonthu, S. R. Sree, and M. H. M. Krishna Prasad,

“Text2PyCode: Machine translation of natural language

intent to python source code,” in Lecture Notes in

Computer Science, Cham: Springer International

Publishing, 2021, pp. 51–60.

